METFORMIN for Nerve Pain


.

.

.

Is metformin the new wonder pill or snake oil? Based on one man’s response to metformin and recent exciting research on the drug, I am looking forward to finding out how it works clinically for my patients with intractable pain (and possibly treatment resistant depression). Hopefully most will confirm it is well tolerated. I am just beginning to trial it after learning this one man’s amazing story:

 

.

50% relief of nerve pain &

.

musculoskeletal pain

.

after 2nd week on metformin

.

One Man’s Story

.

A few days ago I spoke with a man, not my patient, who had 50% relief of pain after the second week on metformin. He’s taken it for 3 months now, but the big change came dramatically after the second week when he had been on the 2,000 mg dose a full week. In 2013, he was on the side of the freeway median lane, and had crawled into the engine of his disabled Ford F350 reaching in with his left hand when his vehicle was hit by a Lexus SUV going 70 mph and he was thrown. He doesn’t talk about his pain. Ever. He needs total knee replacement in the next few weeks, and has had four surgeries on his left wrist, mangled in that engine, now with a long steel plate in the wrist. He broke the titanium plate and it wasn’t healing. Since metformin, the skin and surgical scar is healing. He’s one of these quiet guys who don’t ever talk about pain. His wife simply said these days he’s sleeping since on metformin.

.

But no one had asked him about pain since on metformin or for years either. It took 30 minutes to get one little bit of information from him on pain, like pulling teeth: Since metformin, he’s had 50% relief including the nerve pain at his wrist.

.

She said he used to sit up all night in pain for years and was very irritable. Irritability is what happens with no sleep; pain is worse with no sleep. I could not get him to rate his pain. Stoic. Bright man, stoic. Devilish sense of humor. Severe pain for so many years he would never talk about. His surgeon had him stop the Vicodin 5/325 weeks before his last surgery “to help it heal.”

.

Some of his relief may have also been influenced by blood sugar dropping from 170 to 90, no more excessive thirst and urination keeping him awake, but the neuropathic pain at his wrist had been nasty a few years. Pain had kept him up for months. He had no side effects.

.

Metformin

.

Metformin is a medication approved in Canada in 1972 and in the United States by the FDA in 1994 for type 2 diabetes. It is well tolerated when prescribed for people who do not have diabetes but who have other conditions such as PCOS (polycystic ovary syndrome), infertility; and it is the focus of intense activity being studied for its

.

(1) anti-aging (PDF from Wake Forest University or the Albert Einstein Medical School Longevity study clinicaltrials.gov), 

(2) anti-cancer (ithas become the focus of intense research as a potential anticancer agent” per Cancer Treat. Res. publication 2014) and now recently being studied for

(3) anti-inflammatory analgesic effects.

.

“Metformin increases the number of oxygen molecules released into a cell, which appears to boost robustness and longevity. It works by suppressing glucose production in the liver and increasing insulin sensitivity, therefore benefiting patients with type 2 diabetes.”

.

I am very interested by all the new research being done on an old drug, metformin, that has suddenly turned heads in just the last few months as we learn its mechanisms involving the pain matrix. Is this metformin some miracle drug, another hot trendy bandwagon people jump on in medicine? It’s an old drug already FDA approved, now repurposed, with excellent safety, and four months ago a publication shows it to be a glial modulator and anti-inflammatory, centrally active. Best of all, it was dramatically potent in the setting of this man’s intractable nerve and musculoskeletal pain.

.

But how do we get from 1994 to 2017, through the Decade of Pain, seeing patients who have astonishing pain relief without asking a single patient, millions of patients if it helped pain? A recent past president of the American Endocrine Society said: “No good data on metformin to treat pain. Everything else, but not pain.” He also said, “Safe. We do it all the time for people with PCOS, infertility, cancer, etc. The anti-aging people use it all the time. No risk of hypoglycemia. Just be sure their GFR is above 40.” So ask your doctor who may not know it’s hot research right now.

.

When was it first mentioned for pain?

.

Less than one year ago, a report on metformin’s use for pain was a 2016 poster presentation at the annual meeting of the American Pain Society from Ted Price’s lab at University Texas Dallas. “The AMPK activator metformin has been shown by our lab to reverse the effects of chronic neuropathic pain in various short term studies….The treatment successfully decreased the hypersensitivity and cold allodynia associated with neuropathic pain, and showed persistent relief for several weeks post-injection. Metformin also decreased the activation of microglia in the spinal cord.”

.

.

I have cautiously held back prescribing it for pain until I heard this man’s story a few days ago, and days later I am still astonished at the relief he had. I immediately suspected metformin must be a strong glial modulator and that mechanism was confirmed in a publication four months ago, in animal (discussed at end).

 

.

O

 SIDE EFFECTS

.

If some develop side effects, stop the medication until all side effects are zero. Then at your own body’s rate, as slowly as needed, increase if needed to 1000 mg twice daily.

..

If you again have side effects, again stop til all are zero. Maybe your top dose with no side effects is less than 2,000 mg/day.

.

More information on potential side effects  are on the next metformin post – almost none in 18,000 patient years, and not a single case of lactic acidosis.

.

.

 

.

STUDIES NEEDED

.

It would be extremely helpful to see a study on metformin’s use for pain in a major cancer center, including the range of all underlying diagnoses of those patients who may not be in best of health.  What are % of side effects?

..

INFLAMMATION

.

Metformin helps inflammation. Inflammation is the cause of 90% mortality. Almost all disease in the body begins with inflammation including atherosclerosis that leads to plaque, heart attacks, stroke. And the same risk factors for heart disease are same for Alzheimers. Inflammation manifests differently in each of us, but to relieve pain, major depression, bipolar disease, PTSD, it can be very dynamic to see response in a few hours once you have the right dose and combination of glial modulators. If this one can relieve 50% of severe chronic pain in two weeks, with few or no side effects, then millions can benefit now. It is an old generic drug repurposed for pain, that is anti-inflammatory. Best of all anti-inflammatory up there in the brain where the inflammatory cytokines produced by glia make you feel like you have the flu:  difficulty thinking, fatigue, drowsy, achey, irritable, needing sleep. That is inflammation. The innate immune system going into gear to attack a virus or…..damage.

.

Studies reported about 2001, NIMH showed brain atrophy and memory loss in chronic depression, and about 2009 others showed the same in chronic low back pain.

.

My focus for years has been on inflammation in the CNS (brain, spinal cord) because NSAIDs like ibuprofen, Aleve, do not reach the CNS and do not interact on the cells of interest: glia, the cells of the innate immune system that produce a balance of anti-inflammatory and pro-inflammatory chemicals called cytokines. BALANCE.

.

Tolerance is a big issue in treating pain or major depression. I strongly recommend reading yesterday’s post on tolerance, i.e. when the body stops responding to ketamine or morphine or an antidepressant after several days or weeks or years. Inflammation may be one cause.

.

A publication four months ago shows metformin has both immune and glial suppressive effects that can relieve tolerance to morphine.  It’s a centrally acting analgesic because that’s where chronic pain or major depression is, in the CNS.

 

.

MECHANISM of PAIN RELIEF

.

It has both immune and glial suppressive effects: J Neuroinflammation. 2016 Nov 17;13(1):294.

.

Metformin reduces morphine tolerance by inhibiting microglial-mediated neuroinflammation.

.

ABSTRACT

.

BACKGROUND:

.

Tolerance [see post on this subject yesterday] seriously impedes the application of morphine in clinical medicine. Thus, it is necessary to investigate the exact mechanisms and efficient treatment. Microglial activation and neuroinflammation in the spinal cord are thought to play pivotal roles on the genesis and maintaining of morphine tolerance. Activation of adenosine monophosphate-activated kinase (AMPK) has been associated with the inhibition of inflammatory nociception. Metformin, a biguanide class of antidiabetic drugs and activator of AMPK, has a potential anti-inflammatory effect. The present study evaluated the effects and potential mechanisms of metformin in inhibiting microglial activation and alleviating the antinociceptive tolerance of morphine.

.

…..

.

RESULTS:

.

We found that morphine-activated BV-2 cells, including the upregulation of p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation, pro-inflammatory cytokines, and Toll-like receptor-4 (TLR-4) mRNA expression, which was inhibited by metformin.Metformin suppressed morphine-induced BV-2 cells activation through increasing AMPK phosphorylation, which was reversed by the AMPK inhibitor compound C. Additionally, in BV-2 cells, morphine did not affect the cell viability and the mRNA expression of anti-inflammatory cytokines. In bEnd3 cells, morphine did not affect the mRNA expression of interleukin-1β (IL-1β), but increased IL-6 and tumor necrosis factor-α (TNF-α) mRNA expression; the effect was inhibited by metformin. Morphine also did not affect the mRNA expression of TLR-4 and chemokine ligand 2 (CCL2). Furthermore, systemic administration of metformin significantly blocked morphine-induced microglial activation in the spinal cord and then attenuated the development of chronic morphine tolerance in mice.

.

CONCLUSIONS:

.

Metformin significantly attenuated morphine antinociceptive tolerance by suppressing morphine-induced microglial activation through increasing AMPK phosphorylation.

.

.

.

.
.
.
.
.
.
.

.

The material on this site is for informational purposes only.

.

It is not legal for me to provide medical advice without an examination.

.

It is not a substitute for medical advice, diagnosis or treatment provided by a qualified health care provider.

~~

This site is not for email and not for appointments.

If you wish an appointment, please telephone the office to schedule.

~~~~~

For My Home Page, click here:  Welcome to my Weblog on Pain Management!

..

Please IGNORE THE ADS BELOW. They are not from me.

.

.

.

.

.

Neuroimmunology’s Future – Bioelectronics Treats TNF Diseases – Will replace drug industry


.

.

This is an earth changing, once in a century paradigm shift in medicine.

TNF Alpha Diseases

Bioelectronics reduces TNF alpha

Inflammatory Diseases treated without drugs.

.

A novel therapy, never done before, is now in clinical trials with Rheumatoid Arthritis patients and it is working well  – with no medication. Electrical stimulation is reducing TNF-alpha, the inflammatory cytokines that underlie many diseases including pain, cancer, autoimmune diseases and major depression. This is a completely new field of medicine reported by The New York Times Magazine. I strongly recommend reading the entire article as I have only a small clip below.

.

Several of the foremost neuroscientists are involved with this, starting with the research of Kevin Tracy in 1998 who proved that stimulating the vagus nerve with electricity would alleviate harmful inflammation. He is a neurosurgeon and President of the Feinstein Institute for Medical Research in Manhasset, N.Y.

.

Today researchers are creating implants that can communicate directly with the nervous system in order to try to fight everything from cancer to the common cold. “Our idea would be manipulating neural input to delay the progression of cancer,” says Paul Frenette, a stem-cell researcher at the Albert Einstein College of Medicine in the Bronx who discovered a link between the nervous system and prostate tumors….

.

The list of T.N.F. diseases is long,” Tracey said. “So when we created SetPoint” — the start-up he founded in 2007 with a physician and researcher at Massachusetts General Hospital in Boston — “we had to figure out what we were going to treat.” They wanted to start with an illness that could be mitigated by blocking tumor necrosis factor and for which new therapies were desperately needed. Rheumatoid arthritis satisfied both criteria. It afflicts about 1 percent of the global population, causing chronic inflammation that erodes joints and eventually makes movement excruciating. And there is no cure for it.

.

In September 2011, SetPoint Medical began the world’s first clinical trial to treat rheumatoid-arthritis patients with an implantable nerve stimulator based on Tracey’s discoveries. According to Ralph Zitnik, SetPoint’s chief medical officer, of the 18 patients currently enrolled in the ongoing trial, two-thirds have improved. And some of them were feeling little or no pain just weeks after receiving the implant; the swelling in their joints has disappeared. “We took Kevin’s concept that he worked on for 10 years and made it a reality for people in a real clinical trial,” he says….

.

…The biggest challenge is interpreting the conversation between the body’s organs and its nervous system, according to Kris Famm, who runs the newly formed Bioelectronics R. & D. Unit at GlaxoSmithKline, the world’s seventh-largest pharmaceutical company. “No one has really tried to speak the electrical language of the body,” he says. Another obstacle is building small implants, some of them as tiny as a cubic millimeter, robust enough to run powerful microprocessors. Should scientists succeed and bioelectronics become widely adopted, millions of people could one day be walking around with networked computers hooked up to their nervous systems. And that prospect highlights yet another concern the nascent industry will have to confront: the possibility of malignant hacking. As Anand Raghunathan, a professor of electrical and computer engineering at Purdue, puts it, bioelectronics “gives me a remote control to someone’s body.”

.

.

Glaxo has also established a $50 million fund to support the science of bioelectronics and is offering a prize of $1 million to the first team that can develop an implantable device that can, by recording and responding to an organ’s electrical signals, exert influence over its function. Instead of drugs, “the treatment is a pattern of electrical impulses,” Famm says. “The information is the treatment.” In addition to rheumatoid arthritis, Famm believes, bioelectronic medicine might someday treat hypertension, asthma, diabetes, epilepsy, infertility, obesity and cancer. “This is not a one-trick pony.”

.

…The subjects in the trial each underwent a 45-minute operation. A neurosurgeon fixed an inchlong device shaped like a corkscrew to the vagus nerve on the left side of the neck, and then embedded just below the collarbone a silver-dollar-size “pulse generator” that contained a battery and microprocessor programmed to discharge mild shocks from two electrodes. A thin wire made of a platinum alloy connected the two components beneath the skin. Once the implant was turned on, its preprogrammed charge — about one milliamp; a small LED consumes 10 times more electricity — zapped the vagus nerve in 60-second bursts, up to four times a day. Typically, a patient’s throat felt constricted and tingly for a moment. After a week or two, arthritic pain began to subside. Swollen joints shrank, and blood tests that checked for inflammatory markers usually showed striking declines.

.

Koopman told me about a 38-year-old trial patient named Mirela Mustacevic whose rheumatoid arthritis was diagnosed when she was 22, and who had since tried nine different medications, including two she had to self-inject. Some of them helped but had nasty side effects, like nausea and skin rashes. Before getting the SetPoint implant in April 2013, she could barely grasp a pencil; now she’s riding her bicycle to the Dutch coast, a near-20-mile round trip from her home. Mustacevic told me: “After the implant, I started to do things I hadn’t done in years — like taking long walks or just putting clothes on in the morning without help. I was ecstatic. When they told me about the surgery, I was a bit worried, because what if something went wrong? I had to think about whether it was worth it. But it was worth it. I got my life back.”

.

.

.

.

.

.

.

The material on this site is for informational purposes only.

It is not a substitute for medical advice, diagnosis or treatment provided by a qualified health care provider.

~~~~~

For My Home Page, click here:  Welcome to my Weblog on Pain Management!

.

.

..

.

.

%d bloggers like this: